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Abstract. Conventional video endoscopy and high-speed video endosc-
opy of the human larynx solely provides practitioners with information
about the two-dimensional lateral and longitudinal deformation of vo-
cal folds. However, experiments have shown that vibrating human vocal
folds have a significant vertical component. Based upon an endoscopic
laser projection unit (LPU) connected to a high-speed camera, we pro-
pose a fully-automatic and real-time capable approach for the robust 3D
reconstruction of human vocal folds. We achieve this by estimating laser
ray correspondences by taking epipolar constraints of the LPU into ac-
count. Unlike previous approaches only reconstructing the superior area
of the vocal folds, our pipeline is based on a parametric reinterpretation
of the M5 vocal fold model as a tensor product surface. Not only are
we able to generate visually authentic deformations of a dense vibrating
vocal fold model, but we are also able to easily generate metric measure-
ments of points of interest on the reconstructed surfaces. Furthermore,
we drastically lower the effort needed for visualizing and measuring the
dynamics of the human laryngeal area during phonation. Additionally,
we publish the first publicly available labeled in-vivo dataset of laser-
based high-speed laryngoscopy videos. The source code and dataset are
available at henningson.github.io/Vocal3D/.
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1 Introduction

Human interaction is fundamentally based on the ability to communicate with
each other [2]. Over the last decades, communication-based professions have in-
creased drastically and up to 10% of the Western worlds workforce are now
classified as heavy occupational voice users [22]. Hence, a lasting impairment
of our oral expression is necessarily accompanied by severe social and economic
limitations [5,14], increasing the significance of diagnosing laryngeal and voice-
related disorders. Laryngeal disorders, impairing speech production, result from
different causes ranging from functional abnormalities in the dynamic process as
well as morphological alterations in the anatomical structures. Conventionally,
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Fig. 1: Our pipeline for real-time reconstruction of vocal folds during phonation.
First, we segment images into vocal fold and glottal area. Next, we estimate laser
correspondences by taking the systems epipolar constraints into account. Lastly,
we generate dense reconstructions by optimizing a parametric vocal fold model
using a combined soft-tissue deformation and least squares surface fitting step.

human vocal folds have been examined using standard video endoscopy. However,
when the dynamics of the vocal folds are of interest (i.e. the vocal folds during
phonation), High-Speed Video Endoscopy (HSV) is generally used, as the fre-
quency of the vibration necessitates a high temporal resolution of the recording
camera [10,11,18,7]. Döllinger et al. [4] have shown that moving vocal folds have
a significant vertical expansion in its motion, leading to the assumption that not
only the lateral and longitudinal deformation of vocal folds during phonation is of
interest, but also their vertical deformation. However, classical video-endoscopy
and HSV-Imaging can not resolve the vertical deformation. In common litera-
ture, two systems are used for reconstructing the surface of the vocal folds during
phonation. Either a) stereo-endoscopy systems [26,23], which suffer from a lack
of feature points on the smooth tissue inside the larynx [25] or (as in our case) b)
structured light supported endoscopy which projects a symmetric pattern onto
the surface of the vocal folds [20,13,21,16], which can then be used for stereo
triangulation. To reach clinical applicability, it is necessary that these systems
work robustly without any human input. However, the methods proposed in
[20,13,21,16] do require human input in form of a time-consuming manual la-
beling step. Thus, based upon a laser-based endoscopic high-speed video system
[20], we propose the first fully-automatic real-time capable pipeline for recon-
structing human vocal folds during phonation. An overview of our pipeline is
shown in Fig. 1. Furthermore, we publish a dataset containing laser-endoscopy
videos of 10 healthy subjects that can be used to drive further research in this
area. We believe this work is taking a big step towards integrating 3D video
endoscopy into the clinical routine.

2 Method

Our reconstruction pipeline can be properly divided into three significant parts,
as shown in Fig. 1. It receives high-speed video images as input, that are taken
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a) b) c)

Fig. 2: a) Extracted local maxima lying on the surface of the vocal folds b)
Reconstructed points by Mask Sweeping generated using Epipolar Constraints,
c) Globally aligned and optimized triangulation using RHC.

with a calibrated laser-endoscopy system consisting of a high-speed video camera
(4000 Hz, resolution 256 ˆ 512) and an LPU projecting a symmetric grid of
laser rays. A short video sequence („100-200 ms) is recorded and passed to
our pipeline. First, vocal folds and the glottal area are segmented and a region
of interest is extracted. We use this segmentation to find a frame where the
vocal folds are closed and quasi-planar. Secondly, we generate first laser ray
correspondences in this frame by utilizing epipolar constraints given by the laser-
endoscopy system. We globally align and refine these correspondences, using a
novel RANSAC-based discrete hill climbing (RHC) approach. Third, by stereo
triangulation, we generate per frame 3D points on the surface of the vocal folds.
These are used to fit a novel 3D B-Spline model of the vocal folds, based on the
M5 model [19] to generate realistically moving vocal folds. For step 1 we apply
the technique of Koç et al. [12]. Steps 2 and 3 are presented in the following
sections. Our pipeline is designed to be robust and real-time capable, such that
immediate feedback is given to the user about the success of the recording. -Time

2.1 Correspondence Matching via Epipolar Constraints

Based on a segmentation of the glottis and the vocal folds, we extract the laser
points lying on the superior area of the vocal folds. To this end, we use dilatation
filtering on the ROI of the vocal folds to find local maxima corresponding to the
projected laser rays and weight the estimated local areas by their intensities for
a sub-pixel accurate centroid calculation. Note that we only apply this part of
the pipeline to the estimated frame in which the glottal area is minimal, as we
then use a temporal nearest neighbor search to label all of the remaining frames.
The goal now is to find the proper correspondences between laser rays and their
projected points in the image.

Epipolar Constraint-based Search Space reduction We assume that we have a
calibration between high-speed camera and LPU and that their relative position
is static. Thus, we can project each point on the laser ray rx,yptq “ ol ` t ˚ dx,y
with distance t from the rays origin ol to the point ut

x,y in image space, where
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a) b) c)

Fig. 3: a) Laser rays sampled at u8,8
x,y b) Uniformly sampled laser rays from u0,8

x,y

c) Uniformly sampled laser rays from ur,s
x,y where ur,s

0,0 is highlighted in green. By
taking the epipolar constraints into account, the search space can be drastically
reduced and laser correspondences can be found by sampling from ur,s

x,y.

px, yq P r0 . . .M ´ 1, 0 . . . N ´ 1s are the indices of the ray’s position in the laser
grid. Thus, we can restrict the search space for the laser dots pi to the epipolar
line u0,8

x,y :“ u0
x,y Ñ u8

x,y. However, due to the high density of the lasergrid, we
have to restrict the search space further, to be able to disambiguate all corre-
spondences. In general, one can generate first depth estimations of fronto-parallel
surfaces by measuring the laser points extent in image space. As a laser ray can
be assumed to be collimated for close distances, the projected laser points cir-
cumference is inversely proportional to the surfaces depth. In our setup however,
the image resolution does not allow for such a depth estimation. Instead, we use
the observation of Semmler et al. [21], that states that an endoscopes working
distance is in between 50mm to 80mm above the vocal folds, so we can confine
the search space to this depth range. We refer to the projection of the reduced
search space as ur,s

x,y. A visual representation of this is given in Figure 3. Note
that, as the LPU projects a symmetric laser grid onto the vocal folds surface,
neighboring search spaces overlap. Thus, a disambiguation is still necessary.

Estimating Laser Grid Correspondences Let P “ tpiu be the set of extracted
local laser points. We then want to generate initial laser point - laser ray map-
pings, i.e. we need to know which pi corresponds to which laser ray rx,y. To this
end, we rasterize the line ur,s

x,y for each ray rx,y into the image, whereas the mask
of ur,s

x,y is directly dependent on the radius of the projected laser dots. Whenever
a probable dot pi is hit, we map it to rx,y and remove the local maximum from
P . Note that in this stage, we will still have several wrong correspondences.
After this initialization, we can use stereo triangulation to reconstruct the 3D
world coordinates of the laser points. As can be seen in Figure 2, the triangu-
lated points do not have any global alignment, due to overlapping search spaces.
Thus, many correspondences are mislabeled by a small offset. To globally align
the correspondences, we randomly select a single local maximum pi P P and use
a recursive grid-based search to label the remaining ones. Based on the selected
starting point, all of the consecutively labeled local laser points may now be
mislabeled by a discrete static offset. To find the correct labeling we propose
RHC, a method specifically designed for labelling symmetric laser grids.
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Fig. 4: The set of diverse videos contained in the labeled HLE dataset.

RANSAC-based Hill Climbing for discrete Correspondence Optimization In this
step of the pipeline, the found correspondences are globally aligned, but based
on the chosen starting point for the grid-based search, the correspondences
may only be close to their optimal solution. Thus, we search a static grid-
based offset a, b P Z such that the reprojection error Epx, x̃q is minimized,
i.e. mina,b

ř

piPP Eppi, rx`a,y`bq. Where Epx, x̃q is the Euclidean reprojection er-
ror of point x in image space and the reprojection of the intersection between
the laser ray x̃ and the camera ray stemming from x. Instead of just naively
brute-forcing a global optimum for a and b that might be inaccurate due to out-
liers, we propose a RANSAC-based [8] recursive hill climbing algorithm to find
optimal parameters a and b. RHC optimizes the labels in such a manner that a
local grid-based minimum is found. First, to be robust against outliers, e.g. local
maxima stemming from specular reflections, we take a random subset P̃ Ď P
of local maxima and their corresponding labels x̃, ỹ P X̃ Ď X and calculate
their reprojection error e “ EpP̃ , rx̃,ỹq. We then calculate the reprojection error
of the labels inside the 4-neighborhood of rx̃,ỹ and recurse in the direction of
the smallest error ê “ argmina,b EpP̃ , rx̃`a,ỹ`bq. If e ă ẽ, we stop the recursion,
otherwise, we repeat this process with e “ EpP̃ , rx̃`a,ỹ`bq until a local minimum
has been found. This algorithm is then repeated for different subsets P̃ , until a
convergence criterion or the maximum amount of iterations has been reached.
Next, we update all of the labels based on the discrete labeling-offset a, b that
produced the smallest reprojection error.
Finally, as the videos are of very short duration, we can assume the camera to be
almost static. Thus, we can use a temporal nearest neighbor search on consecu-
tive frames to label all of the remaining images and compute frame-wise point
clouds of the superior vocal fold surface using stereo triangulation.

2.2 Surface Reconstruction

Goal of this step is to generate dense moving vocal folds to better guide practi-
tioners in diagnosing laryngeal disorders, while simultaneously improving com-
prehensibility and plausibility of the data. To achieve real-time performance for
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Fig. 5: First Row: Input to our pipeline. Second Row: Framewise reconstruction
of a vocal fold model and visualization of the geodesic curvatures to measure.
Third Row: Acquired cross sections and geodesic curvatures.

reconstructing dense vocal fold models, we extend the M5 Model by Scherer
et al. [19] to 3D using B-splines, such that we can reduce the amount of pa-
rameters to optimize. Formally, a B-spline surface is a piecewise polynomial
function, where a surface point parameterized by pu, vq is defined by Spu, vq “
řn

i“0

řm
j“0 N

p
i puqNq

j pvqPij . Here, Np
i puq is the i-th polynomial basis function,

where p is the degree in u direction and Pij the set of control points building
the surfaces convex hull. In case of NURBS and B-Splines, they are commonly
computed using the Cox-De-Boor recursion formula [17]. Given the piecewise def-
inition of the 2D-based M5 model in [19], we propose a B-Spline surface based
M5 vocal fold model (BM5). To generate the BM5 we first subdivide each piece
of the parametric function n times and generate points pi lying on the M5’s
surface. We define the knots u P U to be uniformly sampled in the interval r0, 1s.
Next, we extrude the parametric surface in z-direction. We define the knots of
the knot vector vi P V similar to U . Lastly, we define the control points of the
BM5 to be exactly the points P lying on the extruded surface.

Surface Optimization from Sparse Samples Let T be the set of triangulated
points ti P R3. We then fit a plane to the triangulated points ti and project the
extreme points of the glottal midline as well as the glottal outline into the point
cloud, generating T̂ . Next, we align T and T̂ such that the glottal midline lies
on the z-axis to generate a BM5 that lies directly below T . Next, we compute
argmink ||P̂ij ´ t̂k||2, i.e. the nearest triangulated point t̂k P T̂ to every control
point P̂ij defining the superior surface of the vocal fold. We then use as-rigid-as-
possible deformation [24] using the pre-computed mapping for each P̂ij and t̂k
while restricting the deformation of the inferior control points of the BM5. Next,
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Input [21] Ours Input [21] Ours

Fig. 6: Qualitative comparison of the approach by Semmler et al. [21] and our
method using images of the HLE Dataset as input.

we optimize argminP LpSpu, vq, tiq, i.e. minimize the distance between specific
points on the parameterized surface Spu, vq and their nearest neighbor ti, where
LpSpu, vq, tiq is the metric to be minimized.

3 Results

We implemented our pipeline in Python, using the NumPy[9], PyTorch[15] and
OpenCV[1] libraries. We achieve real-time performance (around 25 fps) on an
Intel Core i7-6700K CPU and NVidia Quadro RTX 4000 GPU. For optimizing
the BM5, we use the NURBS-Diff module proposed by Prasad et al. [3]. We use
the approach by Koç et al. [12] for segmenting the vocal folds and glottal area.
Lastly, for calibration we use the method proposed in [21], the systems error
measures can be inferred from that work as well.
We propose the human laser-endoscopic (HLE) dataset, a labeled dataset
consisting of 10 in-vivo monochromatic recordings using a laser-based endoscopic
recording setup of 10 healthy subjects (Figure 4). The videos were recorded
using a 4000FPS camera with a spatial resolution of 256ˆ512 pixels and labeled
manually using [21], whereas a 18 by 18 symmetric laser pattern is projected
into the laryngeal area [20]. Subjects were ordered to make a sustained /i/ vowel
during recording. The dataset consists of high-quality to lower-quality recordings
containing slight camera movement and under-exposed imagery. An excerpt of
the HLE Dataset is given in Figure 4.

RHC Evaluation We evaluate the RHC algorithm on 21 videos of silicone M5
vocal folds under distinct viewing angles (-15° to +15°) and distances (50mm to
80mm), in which a 31 by 31 laser grid is projected onto the vocal fold model [21].
We are interested in the general labelling error of our Mask Sweeping algorithm,
the global alignment pass and the RHC algorithm. To show the validity of each
step, we compute the averaged per label L1-Norm for 20 randomly generated
regions of interest lying inside the laser pattern per video. As we use a grid-
based labelling, the L1-Norm shows the general accuracy of our method. For
example, in case of a 31 by 31 laser grid, we need to discern 961 different labels.
If an algorithm now estimates pn,mq for every label, whereas pn`1,mq would be
correct, the averaged L1-Norm is one. The ground-truth labels were generated
using the semi-automatic approach proposed in [21] for a direct quantitative
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Table 1: L1 Error and Standard Deviation of grid offsets using the Mask Sweeping
(MS), Global Alignment (GA) and RHC step for different viewing angles of
silicone M5 vocal folds. Ground-truth data was generated manually using [21].
α -15° -10° -5° 0° 5° 10° 15° Average
MS 1.54 ˘ 1.25 3.16 ˘ 1.97 3.84 ˘ 1.81 3.31 ˘ 1.39 3.34 ˘ 1.39 3.21 ˘ 1.63 2.86 ˘ 1.78 3.26 ˘ 1.60
GA 2.29 ˘ 1.29 3.15 ˘ 1.65 2.60 ˘ 1.70 2.65 ˘ 1.41 2.31 ˘ 1.50 2.54 ˘ 1.44 3.30 ˘ 1.57 2.57 ˘ 1.51
RHC 1.49 ˘ 1.29 1.67 ˘ 1.27 1.39 ˘ 1.26 1.55 ˘ 0.54 1.26 ˘ 0.93 1.85 ˘ 1.33 1.36 ˘ 1.07 1.51 ˘ 1.10

comparison between the methods. The results can be seen in Table 1. It shows
that the Mask Sweeping algorithm finds solutions close to a local optimum.
However, as can be seen, globally aligning the points generally reduces the error,
while RHC drastically minimizes the offset of the laser grid. We also tested RHC
with an 8- and 12-neighborhood look-up, but couldn’t observe any differences in
labelling accuracy. In general, our approach works robustly in cases where the
laser grid’s edge is included in the ROI. However, in cases where the labelling is
misaligned, RHC finds a mapping that lies on the epipolar lines ur,s

x,y, thus still
finding a solution capable for visualization purposes as the relative proportions
of the triangulation stay intact.

Surface Reconstruction As there does not exist any real-world ground-truth data
for vocal folds during phonation, we’re showing image based comparisons of our
reconstructions using a silicone based M5 vocal fold model and the HLE dataset.
We set the anchor weight of the ARAP algorithm to 105 and the iterations to
2. In the surface fitting step we use the Chamfer Distance [6] as a loss function,
as we want to maximize the point cloud similarity between the points lying on
the superior surface of the vocal folds and the triangulated points. We refine the
control points for 5 iterations with a learning rate of 0.5. In Figure 6 we show a
qualitative comparison of the approach by Semmler et al. [21] and our method. It
can be seen that in previous works, only the superior surface of the glottis could
be reconstructed, while our method also takes the deformation of the inferior
part of the vocal folds into account. In Figure 5 a reconstructed glottal opening
cycle is visualized depicting the temporal coherence of our method, as well as
measurements taken of its geodesic curvature over time.

4 Conclusion

In this work, we proposed the first fully automatic pipeline for reconstructing
dynamic vocal folds during phonation based on a laser-endoscopy system that
records high-speed videos. We achieve this through highly specialized algorithms
for correspondence estimation between symmetric laser grids and their projec-
tion in image space. These algorithms enable the triangulation of thousands of
frames in a matter of seconds. Unlike other approaches, we do not only visualize
and measure the upper surface of the vocal fold, but instead use a parametric
reinterpretation of the M5 vocal fold model for a dense surface reconstruction,
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that also takes the inferior part of the vocal folds into account. Based on an
ARAP-deformation and Least Squares Optimization, we can generate visually
appealing reconstructions of vocal folds in real-time. Furthermore, we proposed
a dataset that can be used to drive further research in this area.
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